
PowerSGD: Practical Low-Rank Gradient
Compression for Distributed Optimization

Rapid Low-rank Approximation
PowerSGD sees a layer’s gradient as a matrix. It approxi‐
mates this matrix as the product of two narrow matrices by
using one step of power iteration.

This approximation is coarse, but only
involves two multiplications of the gradient
matrix and a very narrow one, followed by an
orthogonalization of the output. This is much
faster than an SVD.

PowerSGD converges, even with this coarse approximation.
This is mainly due to the error feedback mechanism.

Input features

O
ut
pu

tf
ea
tu
re
s

Error Feedback
Even though PowerSGD compression is biased
and of low quality, the algorithm can converge
in a similar number of steps as full-precision
SGD. This is thanks to error feedback [Seide et
al. 2014, Stich et al. 2018, Karimireddy et al.
2019].

All-reduce Communication

Code
Download the code at github.com/epfml/powersgd.

In normal, uncompressed, SGD, the workers average their
gradients after each iteration. This average
can be computed efficiently with hierarchical
all-reduce communication.

Unfortunately, compressed algorithms
cannot hierarchically aggregate their
compressed gradients. Therefore, these algorithms resort to
less scalable all-to-all communication or a parameter server.

The power iteration step of PowerSGD, effectively multiplies
the average gradient matrix across workers with the same
narrow matrix (right). Due to linearity, this operation is
equivalent to averaging the small output matrices (left).

Because all communication in PowerSGD is just an average
operation, it enjoys all the benefits of all-reduce.

Scalability
Due to its fast compression algorithm and strong reduction
in communication (around 100x in our experiments), Pow‐
erSGD scales well on slow backends, but can still improve
over SGD when using Nvidia’s highly optimized NCCL.

ResNet-18 on Cifar-10

1 2 4 8 16Workers 1 2 4 8 16Workers

GLOO (Slow backend) NCCL (Fast backend)

1x
2x

4x

8x

1x
2x

4x

8x
PowerSGD PowerSGD

Signum

SGD

SGD
Signum

Plug&Play
In our experiments, PowerSGD can be used plug-and-play
with an existing optimizer without re-tuning the optimizer’s
hyperparameters. With a high enough compression rank,
PowerSGD can achieve the same test accuracy as uncom‐
pressed, full-precision SGD while enjoying reductions in
communication of more than 100x.

Thĳs Vogels Sai Praneeth Karimireddy Martin Jaggi

Lossy Gradient Compression
In distributed training, workers typically exchange their mini-
batch gradients at every iteration. These gradients can be
100’s of megabytes large, so this communication limits the
scalability of distributed optimization.

Lossy compression of gradients before sharing them across
workers is a popular approach to mitigate this problem.

Seed
Worker’s gradientsOutputs

compressed
gradient

error

gradient

compressed


